On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces

نویسندگان

  • Qionglei Chen
  • Changxing Miao
چکیده

In this paper, we prove the local well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth solutions. Specially, a recovered proof of [7] for the incompressible Euler equation is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin Spaces and Applications to Problems in Partial Differential Equations

In their ground-breaking work [42], D. Jerison and C. Kenig have studied the well-posedness of the Poisson problem for the Dirichlet Laplacian on Besov and Bessel potential spaces, ∆u = f ∈ B α (Ω), u ∈ B α+2(Ω), Tru = 0 on ∂Ω, (1.1) ∆u = f ∈ Lα(Ω), u ∈ Lpα+2(Ω), Tru = 0 on ∂Ω, (1.2) in a bounded Lipschitz domain Ω ⊂ R. Let GD be the Green operator associated with the Dirichlet Laplacian in Ω ⊂...

متن کامل

On Anisotropic Triebel-lizorkin Type Spaces, with Applications to the Study of Pseudo-differential Operators

A construction of Triebel-Lizorkin type spaces associated with flexible decompositions of the frequency space R is considered. The class of admissible frequency decompositions is generated by a one parameter group of (anisotropic) dilations on R and a suitable decomposition function. The decomposition function governs the structure of the decomposition of the frequency space, and for a very par...

متن کامل

Best m-term approximation and Lizorkin-Triebel spaces

We shall investigate the asymptotic behaviour of the widths of best mterm approximation with respect to Lizorkin-Triebel as well as Besov spaces. Our approach leads to final assertions in all possible situations. Furthermore, we shall also discuss embeddings into the approximation spaces Aq(Lp) with q < ∞. This leads to detailed information on the decay of wavelet coefficients for the elements ...

متن کامل

Frame Characterizations of Besov and Triebel–lizorkin Spaces on Spaces of Homogeneous Type and Their Applications

The author first establishes the frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications, the author then obtains some estimates of entropy numbers for the compact embeddings between Besov spaces or between Triebel–Lizorkin spaces. Moreover, some real interpolation theorems on these spaces are also established by using these frame characteriza...

متن کامل

A Characterization of Haj lasz-Sobolev and Triebel-Lizorkin Spaces via Grand Littlewood-Paley Functions

In this paper, we establish the equivalence between the Haj lasz-Sobolev spaces or classical Triebel-Lizorkin spaces and a class of grand Triebel-Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when p ∈ (n/(n + 1),∞), we give a new characterization of the Haj laszSobolev spaces Ṁ (R) via a grand Littlewood-Paley function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008